

PAWEŁ ŚLIWIŃSKI

SATELITOWE MASZYNY WYPOROWE PODSTAWY PROJEKTOWANIA I ANALIZA STRAT ENERGETYCZNYCH

GDAŃSK 2016

PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński

REDAKTOR PUBLIKACJI NAUKOWYCH Michał Szydłowski

REDAKTOR SERII Marek Szkodo

RECENZENCI Leszek Osiecki Tadeusz Złoto

REDAKCJA JĘZYKOWA Agnieszka Frankiewicz PROJEKT OKŁADKI Jolanta Cieślawska

Wydano za zgodą Rektora Politechniki Gdańskiej

Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem http://www.pg.edu.pl/wydawnictwo/katalog zamówienia prosimy kierować na adres wydaw@pg.gda.pl

Utwór nie może być powielany i rozpowszechniany, w jakiejkolwiek formie i w jakikolwiek sposób, bez pisemnej zgody wydawcy

© Copyright by Wydawnictwo Politechniki Gdańskiej Gdańsk 2016

ISBN 978-83-7348-664-5

SPIS TREŚCI

Wykaz ważniejszych oznaczeń			
1.	WSTĘP 11		
2.	MECHANIZMY ROBOCZE SATELITOWYCH MASZYN WYPOROWYCH 2.1. Możliwości kojarzenia liczb garbów w krzywych satelitowych 2.2. Liczba satelitów, komór roboczych i cykli napełniania komór na jeden obrót	13 13	
	 wału 2.3. Objętość komory roboczej, chłonność i nierównomierność chłonności mechanizmu satelitowego 	15 15	
3.	HISTORYCZNY ZARYS ZNANYCH ROZWIĄZAŃ KONSTRUKCYJNYCH MASZYN SATELITOWYCH 3.1. Maszyna rotacyjna 3.2. Silniki satelitowe 3.2.1. Silnik SOK 3.2.2. Silnik HF (SP) 3.2.3. Silnik HS 3.2.4. Silnik SM 3.2.5. Silnik SM 3.2.6. Silnik z mechanizmem satelitowym 4×5 3.2.7. Silnik z obracającym się korpusem 3.3.1. Pompa satelitowe 3.3.2. Pompa PSM 3.4. Satelitowa maszyna wyporowa o zmiennej objętości roboczej	18 18 19 20 21 22 23 24 24 25 25 26 27	
4.	CEL I ZAKRES PRACY	28	
5.	 CECHY MECHANIZMU SATELITOWEGO II TYPU 5.1. Podstawowe wymiary geometryczne planety 5.2. Warunki dotyczące kształtu planety 5.3. Kąty graniczne 5.3.1. Pierwszy kąt graniczny 5.3.2. Drugi kąt graniczny 5.4. Współrzędne linii podziałowej zębów obwodnicy 5.5. Proces napełniania komór roboczych i chwilowa objętość robocza 5.6. Prędkości i przyśpieszenia satelity w układzie: obracająca się planeta 	30 30 31 32 32 33 33 34	
	 5.6.1. Prędkość kątowa oraz przyśpieszenie kątowe 5.6.2. Prędkość liniowa oraz przyśpieszenie liniowe 	36 36 38	
6.	MOMENT TEORETYCZNY MECHANIZMU SATELITOWEGO II TYPU5.1. Ramię r działania siły F_p 5.2. Satelita s ₁ w zakresie $\alpha = (0, \alpha_1)$ 5.3. Satelita s ₁ w zakresie $\alpha = (\alpha_1, \alpha_2)$	41 42 42 45	

	6.4. 6.5.	Satelita s Charakte	s_1 w zakresie $\alpha = (\alpha_2, 2\alpha_p)$ prystyki składowych momentu teoretycznego	48 48		
7.	ROZ 7.1.	RZĄD SA Projekto	ATELITOWEJ MASZYNY WYPOROWEJ wanie otworów dopływu i odpływu cieczy w maszynie o nieruchomej	53		
		7.1.1.	Projektowanie otworu dopływu i odpływu o maksymalnym polu	55		
		7.1.2.	Kształtowanie otworu dopływu i odpływu	55		
		7.1.3.	Przekrycia w rozrządzie mechanizmu satelitowego	55		
		7.1.4.	Projektowanie okragłego otworu dopływu i odpływu	56		
		7.1.5.	Liczba otworów w płycie rozrządu i ich rozmieszczenie	56		
	7.2.	Projektowanie otworów dopływu i odpływu cieczy w maszynie o nieruchomej				
		planecie		57		
		7.2.1.	Projektowanie otworu dopływu i odpływu o maksymalnym polu	59		
		7.2.2.	Kształtowanie otworu dopływu i odpływu	59		
		7.2.3.	Liczba otworów w płycie rozrządu i ich rozmieszczenie	60		
8.	POL ROZ	A PRZEP RZADU	PŁYWU I PRĘDKOŚCI PRZEPŁYWU CIECZY W OTWORACH	62		
	81	Pole prz	epływu i predkość przepływu cieczy w otworze o kształcie oka	02		
	0.1.	- nrzyna	dek obracającej sie planety	63		
	82	Pole przypa	endew obracającej się pranety	05		
	0.2.		dek obracającej sie planety	64		
	82	– przypa Dolo przy	aphyvy i pradkość przepływy cięczy w otworze o ksztalcje perki	04		
	0.3.	role pize	dale obraggiogoj gio obvigation	65		
	0 /	- przypa		600		
	8.4.	W IIIOSKI		00		
9.	PRO	JEKTOW	ANIE ZESPOŁU KOMPENSACJI LUZÓW OSIOWYCH	68		
	9.1.	Znane w	ytyczne projektowania kompensacji luzów osiowych	68		
	9.2.	Rozkład	ciśnienia na powierzchni płyt rozrządu	69		
		9.2.1.	Pola działania ciśnień na płytki rozrządu mechanizmu satelitowego	70		
		0 2 2	z obracającą się planetą	/0		
		9.2.2.	Pola działania cisnien na płytki rozrządu mechanizmu satelitowego	71		
	0.0	0.1 1	z obracającą się obwodnicą	/1		
	9.3.	Sily odp	ychające płytki rozrządu	72		
		9.3.1.	Rodzaj sił odpychających	72		
		9.3.2.	Siła wypadkowa odpychająca płytki rozrządu od mechanizmu			
			satelitowego z obracającą się planetą	73		
		9.3.3.	Siła wypadkowa odpychająca płytki rozrządu od mechanizmu			
			satelitowego z obracającą się obwodnicą	73		
		9.3.4.	Metoda uproszczona obliczenia siły wypadkowej odpychającej płytki			
			rozrządu	73		
	9.4.	Deforma	cja płyt rozrządu	75		
	9.5.	Obciążen	nie płyty rozrządu ciśnieniem kompensacji	75		
		9.5.1.	Sposoby kształtowania kompensacji w maszynach z obracającą się planetą	76		
		9.5.2.	Sposoby kształtowania kompensacji w maszynach z obracajaca sie			
			obwodnicą	77		
		9.5.3.	Rozwiązanie kompensacji uniwersalne	79		
	9.6.	Ustalani	e wymiarów geometrycznych pola kompensacji	79		

4

		9.6.1.	Warunki równowagi płyty kompensacyjnej	80
		9.6.2.	Srednice pola kompensacji	81
10	KONS	STRUK	CJE SATELITOWYCH MASZYN WYPOROWYCH	85
	10.1.5	Silnik sa	telitowy SM	85
	10.2.0	John Somma	na numeryczne zespołu kompensacji w silniku SM	80
	10.3.1	Satelitov	vy agregat nomnowy SAP	94 95
	10.5.0	Obliczer	ia numeryczne zespołu kompensacji w pompie agregatu SAP	98
	10.6. 5	Silnik sa	telitowy SWK	. 101
	10.7.0	Obliczer	nia numeryczne zespołu kompensacji w silniku SWK	102
11.	CIECZ	ZE ROB	OCZE MASZYN SATELITOWYCH	. 105
	11.1.0	Olej min	eralny	105
	11.2.	Woda		106
	11.5.1	Emuisja Diej rośl	HFA-E	106 107
	11.7. (51051	, ,	107
12.	BADA	NIA TI	RIBOLOGICZNE MATERIAŁOW PAR KINETYCZNYCH	
	MECH	IANIZN	AU SATELITOWEGO DLA PRZYPADKOW SMAROWANIA	
	EMUI	LSJĄ HI datnia	FA-E, WODĄ, OLEJAMI KOSLINN Y MI OKAZ OLEJEM ZM	100
	12.1	róhki d	o skojarzeń symulujących skojarzenie ślizgowe w mechanizmie	109
	12.1.1 r	oboczvi	m silnika i ciecze smarujące	. 109
	12.2. /	Aparatur	a badawcza	111
	12.3. \	Vyniki ł	badań właściwości smarnych cieczy	. 111
	12.4. \	Wyniki ł	badań odporności na zacieranie w styku konforemnym w warunkach	
	t	arcia śli	zgowego przy zmiennych warunkach wymuszenia	114
		12.4.1.	Próbki i metoda oceny odporności na zacieranie par materiałowych	
		12.4.2	w warunkach smarowania rozmaitymi cieczami	114
		12.4.2.	Przykładowe charakterystyki prędkości, obciązenia, momentu tarcia	116
		12/13	I wspołczyninka tarcia	. 110
		12.4.3.	Zestaw inateriatow z wytączenieni stali nierdzewnej	. 117
		12.4.5	Ocena maksymalnej obciażalności w warunkach smarowania olejem	121
			roślinnym (ORR-S)	122
		12.4.6.	Wnioski końcowe	125
	12.5. \	Wytypov	wanie materiału na satelitowy mechanizm roboczy i płyty	
	ŀ	compens	sacyjne	126
13	USZC	ZELNII	ENIE WAŁU MASZYN SATELITOWYCH	127
	13.1. I	Problem	atyka uszczelnień wału	127
	13.2. I	Przyrząd	l do badania uszczelnień w ruchu obrotowym	127
	13.3. U	Jszczelr	nienia wytypowane do badań	128
	13.4. (Charakte	erystyka materiałów tulejek	. 129
	13.3. ľ	Vietodyk	ka prowauzenia dadan	129 120
	13.0.	w ymki t Wyniki i	badań trwałościowych	. 130 131
	13.7. 13.8. I	Podsum	owanie	135

14. WERYFIKACJA POPRAWNOŚCI DZIAŁANIA ROZRZĄDU I ZESPOŁU	10.0
KOMPENSACJI LUZOW OSIOWYCH	136
14.1. Pomiar zmiany odlegiosci między prytkami kompensacyjnymi w silniku obciażonym	136
14.2 Ocena zespołu kompensacji luzów osiowych poprzez pomiar przecieków	150
w szczelinach czołowych planety silnika	138
14.3. Układ pomiarowy	
14.4. Sposób pomiaru ciśnienia w komorach roboczych mechanizmu satelitowego	140
14.5. Wyniki badań eksperymentalnych pompy i silnika przy $n = 1$ obr/min	141
14.5.1. Wyniki badań silnika zasilanego olejem i wodą	141
14.5.2. Wyniki badań pompy tłoczącej olej i wodę	148
14.6. Mechanizm powstawania przecieków w szczelinach płaskich i w rozrządzie	149
14.7. Przecieki w szczelinach płaskich mechanizmu satelitowego. Weryfikacja	
działania kompensacji luzów osiowych	152
15. SPADEK CIŚNIENIA W KANAŁACH WEWNETRZNYCH POMPY I SILNIKA .	155
15.1. Metody pomiaru spadku ciśnienia w kanałach wewnętrznych	156
15.1.1. Metoda 1	156
15.1.2. Metoda 2	158
15.2. Modele matematyczne strat ciśnienia w kanałach wewnętrznych maszyn	
wyporowych	160
15.2.1. Znane modele strat ciśnienia	160
15.3. Wyniki badań spadku ciśnienia w kanałach wewnętrznych pompy i silnika	
według metody 2	162
15.3.1. Wyniki badań spadku ciśnienia w kanałach wewnętrznych pompy	1 ()
PSM tłoczącej wodę	162
15.3.2. Wyniki badan spadku cisnienia w kanałach wewnętrznych silnika SM	109
15.4. Symulacje przepływu cieczy w pompie PSM i w simiku SM	1/3
15.4.1. Optoszczenie modelu obieżemowego oraz statka wies	. 174
15.4.3. Zdefiniowanie podstawowych właściwości cieczy i charakteru	175
przepływu	176
15.4.4. Wyniki symulacji przepływu wody i oleju w pompie	177
15.4.5. Wyniki symulacji przepływu wody i oleju w silniku	182
15.4.6. Spadek ciśnienia w kanałach wewnętrznych pompy i silnika	186
16. ΜΩΡΕΙ Ε ΜΑΤΕΜΑΤΥΩΖΝΕ ΝΑΤΕŻΕΝΙΑ DD ZEDŁ VWI LCIECZY	
W SZCZELINACH PŁASKICH MECHANIZMU ROBOCZEGO	189
16.1 Znane modele nateżenia przepływu cieczy w szczelinach płaskich	189
16.2. Proponowane modele nateżenia przepływu cieczy w szczelinach płaskich	107
mechanizmu satelitowego	189
16.2.1. Model pierwszy	191
16.2.2. Model drugi	196
16.2.3. Porównanie modelu pierwszego z drugim	200
17 ΜΩDEL ΜΑΤΕΜΑΤΥΩΖΝΎ ΝΑΤΕŻΕΝΙΑ ΡΡΖΕΡΙ ΥΨΗ CIECZY	
W SZCZELINACH ROZRZADU	202
17.1. Znane metody opisu nateżenia przepływu cieczy w szczelinach rozrzadu	202
17.2. Proponowany model natężenia przepływu cieczy w szczelinach rozrządu	204

18.	STRATY OBJETOŚCIOWE	
	18.1. Znane metody opisu strat objętościowych	
	18.2. Proponowany opis matematyczny strat objętościowych	
	18.2.1. Strata objętościowa $\Delta Q_{\rm fc}$ zależna od ściśliwości cieczy	
	18.2.2. Strata objetościowa ΛO_{deb} spowodowana spreżysta deformacja	
	komór roboczych	216
	18.2.3 Strata objetościowa $\Delta O_{\rm L}$ zależna od wielkości luzów	
	miedzyzebnych i wierzchołkowych	217
	$18.2.4$ Strata objetościowa A $\Omega_{\rm ex}$ zależna od bezwładności satelitów	
	$10.2.1.$ Struct objętosolowu $\underline{A}\underline{\mathcal{G}}_{1d}$ zateżna od obzwładnisej satelniow i cieczy w komorach roboczych i zależna od właściwości cieczy	217
	18.2.5 Przecieki zewnetrzne <i>O</i>	217
	18.2.6 Przyrost objetości roboczej AV	217
	18.2.7 Predkość obrotowa silnika i strata predkości	217
	18.2.7. 1 içüköse öbiölöwä siilika i suala piçükösei	218
	18.3.1 Wymiei badań strat objętościowych w silniku	210
	18.3.2 Predkość obrotowa silnika i strata predkości	218
	18.4. Wyniki badań strat obietościowych w pompie	221
	18.5. Współczymniki modelu i symulacje charakterystyk strat objętościowych	224
	18.5.1 Straty objetościowe w silniku	225
	18.5.2. Straty objętościowe w sninku	223
	18.6 Ocena modelu strat objętościowach	228
	18.7. Ocena modelu przyrostu objętości roboczej w silniku i w pompie	
	18.8 Empiryczny model przyrostu objętości roboczej w siniku i w ponipie	234
	18.8. Empiryezity model przytosta objętości toboczej	
19.	STRATY MECHANICZNE	
	19.1. Znane metody opisu strat mechanicznych	
	19.2. Proponowana metoda opisu strat mechanicznych	
	19.2.1. Źródła strat mechanicznych	
	19.2.2. Moment strat w maszynie nieobciążonej	
	19.2.3. Moment strat w maszynie obciążonej	
	19.3. Wyniki badań eksperymentalnych strat mechanicznych	
	19.3.1. Moment strat mechanicznych w nieobciążonym silniku	
	19.3.2. Moment strat mechanicznych w nieobciążonej pompie	250
	19.3.3. Moment strat mechanicznych w obciążonym silniku	
	19.3.4. Moment strat mechanicznych w obciążonej pompie	256
	19.4. Współczynniki modelu i symulacje charakterystyk momentu strat	
	mechanicznych	259
	19.4.1. Moment strat mechanicznych w silniku	259
	19.4.2. Moment strat mechanicznych w pompie	
	19.5. Ocena modelu strat mechanicznych	266
20	WPŁYW OLEIU RZEPAKOWEGO I EMULSII HFA-E NA STRATY	
20.	W SATELITOWYCH MASZYNACH WYPOROWYCH	269
	20.1 Porównanie strat w silniku satelitowym zasilanym oleiem mineralnym	
	i olejem rzepakowym	269
	20.2. Porównanie strat w silniku satelitowym zasilanym emulsia oleju	
	w wodzie typu HFA-E i woda	271
	20.3. Wyniki badań wstepnych agregatu pompowego SAP	

Spis treści

21. PODSUMOWANIE	. 274
LITERATURA	. 279
Streszczenie w języku polskim	. 288
Streszczenie w języku angielskim	. 289

Wykaz ważniejszych oznaczeń

- szerokość szczeliny b
- prędkość przepływu С
- średnica satelity d
- h wysokość szczeliny
- współczynnik przekrycia k
- długość szczeliny 1
- moduł zęba т
- prędkość obrotowaciśnienie lub nacisk п
- р
- prędkość liniowa v
- pole A
- В - współczynnik proporcjonalności
- C- współczynnik
- D - średnica lub stała fizyczna
- Ε współczynnik
- F – siła lub stała fizyczna
- Η wysokość
- wartość przekrycia J
- Κ współczynnik
- M- moment
- pole niskiego ciśnienia na płytce kompensacyjnej Ν
- Q – chłonność lub wydajność
- R - ramię, odległość
- Re - liczba Reynoldsa
- S - pole średniego ciśnienia na płytce kompensacyjnej
- Vobjętość
- W - pole wysokiego ciśnienia na płytce kompensacyjnej
- Χ
- współrzędna
 współrzędna lub współczynnik wagi szerokości szczelin Y
- Ζ ilość
- Δ - zmiana, różnica
- kat α
- stopień laminarności przepływu lub ściśliwość cieczy β
- przyśpieszenie kątowe ε
- współczynnik oporów liniowych λ
- lepkość dynamiczna cieczy μ
- lepkość kinematyczna cieczy v
- gęstość cieczy ρ
- prędkość kątowa ω
- współczynnik strat miejscowych ξ

Indeksy dolne

	-	
b	_	dotyczy luzów międzyzębnych i wierzchołkowych
bs	_	dotyczący łożysk i uszczelek
с	-	cykl
dch	-	sprężysta deformacja komór
ds	_	dotyczący sprężania cieczy w komorach martwych
e	-	efektywny
ev	_	średni
ex	—	zewnętrzny
f	—	dotyczy podstawy zęba
fc	-	dotyczący ściśliwości cieczy
g	—	geometryczny
i	—	w komorach roboczych
ic	_	kanał wewnętrzny
ich	—	kanały wewnętrzne
id	_	dotyczy bezwładności satelitów i cieczy
k	_	komora robocza lub dotyczący kompensacji
1	—	laminarny lub dotyczący strat
ml	—	dotyczy tarcia mieszanego
0	_	obwodnica
od	_	odpychający
р	_	planeta
S	_	satelita
sym	_	dotyczy symulacji (obliczeń)
t	_	teoretyczny lub turbulentny
ts	_	dotyczący sprężania cieczy w przestrzeniach międzyzrębnych
vl	_	dotyczy strat objętościowych
С	_	dotyczy przecieku w szczelinach rozrzadu
Cm	_	dotyczy piku przepływu w szczelinach rozrządu
HPC	_	komora wysokiego ciśnienia
IH	_	kanał/ otwór dopływowy
Lfg	_	dotyczy przecieków w szczelinach płaskich
LPC	_	komora niskiego ciśnienia
N	_	dotyczy płytki z otworami odpływowymi
0	_	olei
ОН	_	kanał/ otwór odpływowy
S	_	po stronie niskiego ciśnienia
Ť	_	po stronie wysokiego ciśnienia
Ŵ	_	dotyczy płytki z otworami dopływowymi
w	_	woda
••		"Ouu
ν	-	dotyczy tarcia płynnego w szczelinach

Indeksy górne

współczynnikwspółczynnik α

γ

Rozdział 1

WSTĘP

Cenną zaletą napędu hydrostatycznego jest możliwość przekazywania dużej mocy przy dużej zwartości konstrukcji napędu, jego małej masie i małej bezwładności elementów roboczych. Mimo to napędy te muszą ciągle rywalizować na rynku z odmiennymi rodzajami napędów, takimi jak elektryczne, pneumatyczne, mechaniczne itp. Pojawiające się nowe koncepcje napędów, zwłaszcza elektrycznych, wykorzystujących zjawisko nadprzewodnictwa, mogą stanowić bardzo poważną konkurencję dla napędu hydrostatycznego i w efekcie wyprzeć go z rynku.

Pompy i silniki hydrauliczne są najważniejszymi elementami hydrostatycznego układu napędowego. Maszyny te są jednostkami wyporowymi, czyli charakteryzują się określoną objętością roboczą, a przestrzeń niskociśnieniowa mechanizmu roboczego jest szczelnie oddzielona od przestrzeni wysokociśnieniowej.

Zarówno pompy, jak i silniki należą do bardziej skomplikowanych elementów układów hydraulicznych i z tego powodu podlegają złożonej ocenie jakości. Na ich pełną ocenę składa się wiele cech: technicznych, użytkowych, ekonomicznych, a nawet estetycznych. Cechy techniczne i użytkowe wywierają znaczny wpływ na właściwości napędu hydrostatycznego.

Silniki hydrauliczne wyporowe stanowią w układzie napędowym organ wykonawczy, którego zadaniem jest przetworzenie energii strumienia cieczy w energię mechaniczną niezbędną do wprawienia maszyny w ruch i przeniesienia obciążenia zewnętrznego. Silnikom hydraulicznym stawia się wysokie wymagania, takie jak:

- a) stabilna praca przy bardzo małych prędkościach obrotowych dotyczy to silników wolnoobrotowych wysokomomentowych;
- b) praca przy dużych prędkościach obrotowych nawet powyżej 3000 obr/min;
- c) rozruch pod obciążeniem;
- d) przenoszenie dużych obciążeń praca przy coraz wyższych ciśnieniach zasilania;
- e) wysoki stosunek przenoszonej mocy do ich masy;
- f) możliwość zasilania cieczami o różnych parametrach, tj. o szerokim zakresie lepkości i właściwości smarnych.

Pompa w układzie napędowym stanowi źródło energii strumienia cieczy i jest najbardziej obciążoną jednostką w układzie napędowym. Pompy muszą sprostać wielu wymaganiom stawianym przez:

- a) hydrauliczny układ napędowy, tj.: wysokie ciśnienia pracy osiągające 40 MPa i więcej, szerokie możliwości sterowania wydajnością, możliwość zmiany kierunku tłoczenia cieczy przy stałym kierunku obrotów wału, niski poziom emitowanego hałasu, samossawność itp.;
- b) silniki napędzające te pompy, tj.: szeroki zakres prędkości obrotowej nawet do kilku tysięcy obrotów na minutę, możliwość pracy przy obu kierunkach obrotów wału;
- c) parametry cieczy roboczej, tj.: szeroki zakres lepkości cieczy i właściwości smarnych.

Wyżej wymienione wymagania są brane pod uwagę już na etapie projektowania tych maszyn. Nieodzowna przy tym jest znajomość metod projektowania i zjawisk zachodzą-

cych w maszynie podczas jej pracy. Zjawiska te bardzo często są odkrywane na etapie badań prototypów nowych konstrukcji. Właściwa interpretacja zjawisk fizycznych zachodzących w pracującej maszynie umożliwia wskazanie kierunków poprawy rozwiązania konstrukcyjnego. Ogromne znaczenie ma opracowanie i przyjęcie właściwego modelu matematycznego opisującego te zjawiska w sposób jak najbardziej przybliżony do rzeczywistości. Jak dotąd badacze maszyn wyporowych opracowywali i stosowali modele matematyczne uniwersalne dla wszystkich typów pomp lub silników hydraulicznych. Modele takie nie opisywały ściśle zjawisk zachodzących w różnych charakterystycznych dla danej maszyny elementach, np. w elementach zębatych mechanizmu roboczego, w parach stopka tłoczka – tarcza wychylna, bęben cylindrowy – rozdzielacz itp.

Modele matematyczne strat zachodzących w hydraulicznych maszynach wyporowych muszą być opracowywane indywidualnie dla każdego typu maszyny wyporowej na podstawie szczegółowych badań laboratoryjnych. W tym celu niezbędne jest zbudowanie odpowiednich stanowisk badawczych i wyposażenie ich w specjalistyczną aparaturę pomiarową.

Jak dotąd na rynku dominują maszyny wyporowe tłokowe o stałej i zmiennej objętości komór roboczych oraz maszyny zębate. Nie są to jednak konstrukcje nowe, a ich obecne parametry są efektem co najmniej kilkudziesięciu lat prac badawczo-rozwojowych. Proces poprawy parametrów tych maszyn postępuje nadal, jednak jego tempo jest bardzo powolne, czego główną przyczyną jest zbliżenie się do granic wyznaczonych prawami fizyki.

Istnieje więc potrzeba opracowania zupełnie nowych konstrukcji maszyn wyporowych o walorach odmiennych od cech maszyn powszechnie znanych na rynku. Takimi maszynami są maszyny satelitowe.