Katarzyna Szepietowska

Polynomial Chaos Expansion in Bio-and Structural Mechanics

Gdańsk 2022

GDAŃSK UNIVERSITY OF TECHNOLOGY PUBLISHING HOUSE CHAIRMAN OF EDITORIAL BOARD Dariusz Mikielewicz

EDITOR OF SCIENTIFIC PUBLICATIONS Michał Szydłowski

REVIEWERS Andrzej Ambroziak Wojciech Wolański

LAYOUT Katarzyna Szepietowska

COVER DESIGN Ireneusz Jelonek

Published under the permission of the Rector of Gdańsk University of Technology

Gdańsk University of Technology publications may be purchased at https://www.sklep.pg.edu.pl

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means without permission in writing of the copyright holder.

 $\ensuremath{\mathbb C}$ Copyright by Gdańsk University of Technology Publishing House, Gdańsk 2022

ISBN 978-83-7348-866-3

Preface

This monograph is my doctoral thesis that was written within cotutelle programme in a partnership between Gdańsk University of Technology (Poland) and Institut National des Sciences Appliquées - Centre Val de Loire (France) and defended on October 12, 2018 [173]. Literature has been updated with a couple of recently published articles.

First and foremost, I would like to express my deep gratitude to all my supervisors: Prof. Izabela Lubowiecka, Prof. Eric Florentin and Dr. Benoit Magnain. I am very grateful for their guidance, advice, availability, encouragement and patience. Furthermore, special thanks go to Prof. Izabela Lubowiecka for engaging me in the project concerning the mechanical approach to hernia repair and introducing me the world of biomechanics. In addition I thank Prof. Eric Florentin for introducing me to stochastic mechanics, enabling me to do my Phd in cotutelle and welcoming me to France. I thank Dr. Benoit Magnain for a lot of valuable help in realisation of the research.

I wish to show gratitude to reviewers of my doctoral thesis: Prof. Jerzy Małachowski, Prof. Philippe Rouch and reviewers of this monograph Prof. Andrzej Ambroziak, Prof. Wojciech Wolański for their valuable remarks.

I am also grateful to Prof. Paweł Kłosowski for his help and the opportunity to work in the Department of Structural Mechanics of Faculty of Civil and Environmental Engineering at Gdańsk University of Technology.

My sincere thanks also go to Prof. Czesław Szymczak and Prof. Agnieszka Tomaszewska for encouragement, sharing experience and stimulating discussions.

I thank Dr. Kamil Bury for discussions on medical aspects of the research on hernia repair, Dr. James Pfeffer for English corrections and Anna Pestka (Mleczek) for data needed to model the mechanics of timber corner joints.

The research presented in the thesis was partially supported by grant UMO-2015/17/N/ ST8/02705 from the National Science Centre, Poland, and by the subsidy for the development of young scientists given by the Faculty of Civil and Environmental Engineering, Gdańsk University of Technology. Computations were performed partially in TASK Computer Science Centre, Gdańsk, Poland. The study on timber joints was partially supported by grant No. 2015/17/B/ST8/03260 given by the National Science Centre, Poland.

Last but not least, I would like to thank my family and friends for their support.

Contents

Sy	mbo	ls	7												
1	Intr	roduction	11												
	1.1	Ventral Hernia	11 12												
	19	Uncortainty Quantification	10												
	1.2	1.2.1 Uncertainty quantification in biomechanics and structural mechanics	$19 \\ 20$												
	1.3	Objectives	21												
	1.4	Outline	22												
2	Uno	Uncertainty quantification and sensitivity analysis 23													
	2.1	Uncertainty quantification methods	23												
		2.1.1 Sampling-based methods	23												
		2.1.2 Spectral methods	24												
	2.2	Sensitivity analysis	29												
		2.2.1 Local sensitivity analysis	30												
		2.2.2 Global sensitivity analysis	30												
3	Cor	nparison of regression point choice methods	35												
	3.1	Methods to choose regression points in nonintrusive polynomial chaos expansion	35												
		3.1.1 Random and quasi-random choice	36												
		3.1.2 Optimality criteria	36												
		3.1.3 Combined approach	39												
		3.1.4 Summary of methods	40												
	3.2	Comparison of methods on numerical examples	42												
		3.2.1 Examples	43												
		3.2.2 Results on 1D-dimensional examples	48												
		3.2.3 Results of comparison on multivariate examples	70												
	3.3	Conclusions	81												
4	Res	ults of uncertainty propagation and sensitivity analysis	85												
	4.1	Cable model (model 1)	85												
	4.2	Model of membrane subjected to forced displacement of supports	88												
		4.2.1 10-D problem with independent variables	88												
		4.2.2 Reduction of number of variables	88												
		4.2.3 Correlated variables	90												
	4.3	Model of membrane subjected to intraabdominal pressure	95												
		4.3.1 Deterministic model	95												
		4.3.2 Uncertainties in pressure and elasticity of the abdominal wall tissues	97												
		4.3.3 Model of membrane subjected to pressure with fixation imperfections	99												
	4.4	Membrane model of abdominal wall with implant	103												
		4.4.1 Model	103												
		4.4.2 Results	104												
	4.5	Civil engineering application: corner joints in historic log houses	107												
	-														

	4.6	4.5.2 4.5.3 Conclu	Model . Results usions	 	 		 		 		•	 		 		 		$ 108 \\ 110 \\ 116 $
5	Con	clusio	ns															119

\mathbf{A}	Tecl	nnical information on implementation of probabilistic models and sensi-	
	tivit	y analysis	123
	A.1	Used tools	123
	A.2	Multivariate polynomials	124
	A.3	Correlation matrices	124
Bi	bliog	raphy	127

Symbols

$lpha_{aw}$	orientation angle of the abdominal wall in lateral zone
α_{orient}	orientation angle of the surgical mesh
$ar{\sigma}_{max}$	mean value of maximum principal stresses
$ar{\sigma}_{min}$	mean value of minimum principal stresses
ξ	standard input vector
δ_i	angular change in position of support
Δ_p	displacement of the cable edge
λ_i	eigenvalue of C
$\mathbf{A}^{\top}\mathbf{A}, \mathbf{A}^{\top}\mathbf{W}\mathbf{A}$	information matrix
С	correlation matrix
Х	random input vector
\mathbf{Y}_{ex}	vector of exact solutions
\mathcal{A}	truncation set
$\mathcal{H}_{\mathbf{X}}$	support of input vector \mathbf{X}
\mathcal{H}_{X_k}	support of random variable X_k
$\mathcal{LN}(\mu_{lni},\sigma_{lni})$	lognormal distribution
\mathcal{M}	computational model
\mathcal{M}^{PC}	polynomial chaos metamodel
\mathcal{M}_0	mean
$\mathcal{M}_i(X_i), \mathcal{M}_{i,j}(X_i, X_j), \mathcal{M}_{1,2,\dots,M}(\mathbf{X})$	terms of ANalysis of VAriance decomposition
$\mathcal{N}(\mu_i,\sigma_i)$	normal distribution
\mathcal{T}	isoprobabilistic transform
$\mathcal{U}([a,b])$	uniform distribution
$\max \sigma_{max}$	maximum value of maximum principal stresses
$\min \sigma_{min}$	minimum value of minimum principal stresses
μ_{cj}	coefficient of friction between wooden logs
$\Psi_{oldsymbol{lpha}}(oldsymbol{\xi}), \Phi_{oldsymbol{lpha}}(\mathbf{X})$	multivariate polynomial basis
$arphi_i$	eigenfunction of C

Ξ	design of experiment
A	cross sectional area of the cable
a_{α}	coefficients of the polynomial chaos expansion
C	covariance function
D	variance
D_{i_1,\ldots,i_s}	partial variance
E	elastic modulus of the cable
E_1, E_2	elastic moduli of surgical mesh in two directions
E_1^{aw}, E_2^{aw}	elastic moduli of abdominal wall in two directions
E_L	Young's modulus of wood in longitudinal direction
$Err_{\%}$	reference error
Err_s	error in calculating Sobol' indices
$Err_{PC\%}$	error of the PC metamodel
$F(\mathbf{Z},\omega)$	random field
$f_{\mathbf{X}}$	probability density function of the input ${\bf X}$
f_{X_i}	marginal distribution of variable X_i
g	distributed load in the cable model
G_{12}^{aw}	shear modulus of abdominal wall
Н	horizontal reaction in the cable model
H_0	initial force in the cable
H_n	Hermite polynomial
k_{aw}	stiffness of elastic foundation
k_f	stiffness of elastic springs
l	span of the surgical mesh/cable
L_0	initial length of the cable
L_n	Legendre polynomial
l_s	overlap of the surgical mesh onto the fascia
M	dimension of the input vector ${\bf X}$
N_{KL}	number of terms of Karhunen-Loéve expansion
N_{MC}	number of simulations in Monte Carlo method
NRMSE	normalized root mean square error
Р	size of the polynomial chaos basis
p	polynomial order
p_{ia}	intraabdominal pressure
R_i	reaction force in i -th support

r_i	radial change in position of support
R_{max}	maximum reaction force
RMSE	root mean square error
S_i^{local}	local sensitivity index
$S_{i_1,,i_s}$	Sobol' sensitivity index
S_i^{Tot}	total Sobol' sensitivity index
t_i	forced displacement of i -th support
u_{aw}	displacement of point in healthy abdominal wall
u_i	displacement of the centre of the implant in the global model
u_{max}	maximum deflection of the implant
w	weight function
Y	model response, quantity of interest
DoE	abbreviation of Design of Experiment
FE	abbreviation of finite element
LHS	abbreviation of latin hypercube sampling
MC	abbreviation of Monte Carlo
PC	abbreviation of polynomial chaos
PDF	abbreviation of probability density function
QoI	abbreviation of quantity of interest
SA	abbreviation of sensitivity analysis
UQ	abbreviation of uncertainty quantification

Chapter 1

Introduction

The motivation of this study is the need for a mechanics-based approach to support the treatment of ventral hernia to help surgeons in solving the problem of hernia recurrences. Mathematical models are created to predict the mechanical behaviour of the implant-abdominal wall system and they can be used in the optimization of ventral hernia repair parameters. However, challenges such as the uncertainty related to natural variability of abdominal tissue mechanics and difficulties accurate measurement of material model parameters may occur in the modelling. Therefore, this study concerns an application of uncertainty quantification methods in the models of the implant-abdominal wall system.

1.1 Ventral Hernia

A ventral hernia is a bulge of tissues through a gap in the muscalo-fascial system. The hernia defect can be congenital, develop over time as a result of muscle weakness or be caused by trauma. Nowadays hernia commonly occurs at the place of an incision after other abdomen surgery (incisional hernia). In the study of Bensley et al. [10] hernia developed in 12% of patients after major abdominal surgery and in 3.3% after a laparoscopic operation. In France alone around 13 000 incisional hernia repairs are performed each year with an annual cost of around 84 million euros when estimated indirect cost related to sick leave etc. are included [57]. According to Skalski et al. [157], around 13 000 people are operated due to abdominal hernia every year in Poland.

According to Muysoms et al.[129], ventral hernias are classified based on the localisation, size and information on previous repairs. Primary hernia in terms of the location can be epigastric, umbilical, spigelian and lumbar. Incisional hernias, owing to their higher diversity, are divided into more subgroups: subxiphoidal, epigastric, umbilical, infraumbilical, suprapubic, subcostal, flank, iliac and lumbar. As shown in the previous work [178], the developed mathematical models can be applied to different locations of hernia.

The treatment of ventral hernia is usually carried out by surgical intervention. An implant in the form of a surgical mesh is connected by the surgeon to the abdominal wall to cover the defect. It can be performed by an open or laparoscopic operation. Laparoscopic ventral hernia repair (LVHR) is less invasive and is believed to be superior to open repair in terms of short-term results [143, 151]. Although a smaller number of postoperative complications were observed in patients treated by the laparoscopic method, the hernia recurrence rate is similar for both methods. Meshes for LVHR are typically made from polypropylene, polyester or expanded polytetrafluoroethylene [47]. It is desirable to reduce the number of hernia recurrences and pseudo-recurrences related to excessive bulging of the mesh. An increase of efficiency of hernia repair would have not only a clinical impact, but also a societal and economical one. It has been estimated that reduction of the recurrence rate only by 1% would save 32 million dollars just in the US [141]. Despite a number of studies, there is no consensus on the material and type of fixation which should be used in hernia repair [18].

Brown and Finch [20] wrote a medical review on surgical mesh choice which also described the history of surgical meshes as implants in hernia repair. The use of surgical meshes to reinforce the