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Chapter 1

Introduction

The motivation of this study is the need for a mechanics-based approach to support the treatment
of ventral hernia to help surgeons in solving the problem of hernia recurrences. Mathematical
models are created to predict the mechanical behaviour of the implant-abdominal wall system
and they can be used in the optimization of ventral hernia repair parameters. However, challenges
such as the uncertainty related to natural variability of abdominal tissue mechanics and difficul-
ties accurate measurement of material model parameters may occur in the modelling. Therefore,
this study concerns an application of uncertainty quantification methods in the models of the
implant-abdominal wall system.

1.1 Ventral Hernia

A ventral hernia is a bulge of tissues through a gap in the muscalo-fascial system. The hernia
defect can be congenital, develop over time as a result of muscle weakness or be caused by
trauma. Nowadays hernia commonly occurs at the place of an incision after other abdomen
surgery (incisional hernia). In the study of Bensley et al. [10] hernia developed in 12% of
patients after major abdominal surgery and in 3.3% after a laparoscopic operation. In France
alone around 13 000 incisional hernia repairs are performed each year with an annual cost of
around 84 million euros when estimated indirect cost related to sick leave etc. are included [57].
According to Skalski et al. [157], around 13 000 people are operated due to abdominal hernia
every year in Poland.

According to Muysoms et al.[129], ventral hernias are classified based on the localisation, size
and information on previous repairs. Primary hernia in terms of the location can be epigastric,
umbilical, spigelian and lumbar. Incisional hernias, owing to their higher diversity, are divided
into more subgroups: subxiphoidal, epigastric, umbilical, infraumbilical, suprapubic, subcostal,
flank, iliac and lumbar. As shown in the previous work [178], the developed mathematical models
can be applied to different locations of hernia.

The treatment of ventral hernia is usually carried out by surgical intervention. An implant
in the form of a surgical mesh is connected by the surgeon to the abdominal wall to cover
the defect. It can be performed by an open or laparoscopic operation. Laparoscopic ventral
hernia repair (LVHR) is less invasive and is believed to be superior to open repair in terms of
short-term results [143, 151]. Although a smaller number of postoperative complications were
observed in patients treated by the laparoscopic method, the hernia recurrence rate is similar for
both methods. Meshes for LVHR are typically made from polypropylene, polyester or expanded
polytetrafluoroethylene [47]. It is desirable to reduce the number of hernia recurrences and
pseudo-recurrences related to excessive bulging of the mesh. An increase of efficiency of hernia
repair would have not only a clinical impact, but also a societal and economical one. It has been
estimated that reduction of the recurrence rate only by 1% would save 32 million dollars just in
the US [141]. Despite a number of studies, there is no consensus on the material and type of
fixation which should be used in hernia repair [18].

Brown and Finch [20] wrote a medical review on surgical mesh choice which also described the
history of surgical meshes as implants in hernia repair. The use of surgical meshes to reinforce the


